Enhanced Sensor Communication through Trusted Computing

Anestis Papakotoulas', Theodore Milonas?, Kakia Panagidi', and Stathes Hadjiefthymiades'

apapakot@di.uoa.gr, theo_milon@yahoo.gr, kakiap @di.uoa.gr, shadj@di.uoa.gr

'Department of Informatics & Telecommunications, National and Kapodistrian University of Athens

’Department of Science & Technology, Hellenic Open University

Abstract

Wireless Sensor Networks (WSNs) are an essential part of
the Internet of Things (IoT), providing connectivity to a wide
range of applications, such as environmental monitoring,
smart homes, healthcare, and industrial automation. WSNs
consist of a large number of small, low-cost, and power-
constrained sensor nodes that communicate wirelessly to a
base station or sink node. However, the inherent characteris-
tics of WSNs, such as limited resources, ad-hoc networking,
and open communication channels, make them vulnerable
to various security threats. Therefore, secure and efficient
communication is essential for WSNss to provide reliable and
trustworthy services. One approach to enhancing the secu-
rity of WSNs is by incorporating the Trusted Platform Mod-
ule (TPM), which is a hardware-based security solution that
provides secure storage and processing of sensitive informa-
tion. The TPM can be used to secure the communication be-
tween sensor nodes and the base station, as well as to authen-
ticate the nodes and prevent unauthorized access. Moreover,
the TPM can be used to implement secure group communi-
cation, which is essential for many WSN applications. In
this paper, we propose an enhanced sensor communication
scheme for WSNs using TPM.

Our approach provides a secure and efficient communica-
tion mechanism for WSNs by integrating the TPM with the
communication protocol. The proposed scheme supports se-
cure end-to-end communication, group communication, and
authentication, and it is designed to work with different com-
munication protocols. The evaluation results demonstrate
the effectiveness of the proposed scheme in enhancing the se-
curity of WSNs providing significant outcomes for the man-
agement of computing resources and memory. Therefore,
this research can contribute to the development of secure and
trustworthy WSNs for IoT applications.

1 Introduction

Wireless sensor networks (WSNs) have emerged as a
promising technology in various domains, including health-
care, environmental monitoring, and industrial automation.
With the advancement of sensor technology, WSNs have be-
come more powerful and pervasive. However, the security
and privacy of sensor data remain a significant challenge.
Hence, the communication among sensors and the data col-
lected from them must be secured to avoid potential attacks
from malicious nodes or eavesdroppers.

Therefore, a trusted link (based on security services) is
essential to provide trusted services between the aforemen-
tioned technical sectors and to establish a trustworthy IoT
ecosystem for everybody. Trust is an essential component of
security that may be earned or granted but should never be
assumed. Many applications are constructed with uncontrol-
lable server and client ends. The Trusted Computing Group
(TCG) is developing and promoting trusted computing as an
emerging technology. The Trusted Computing Group (TCG)
is an industry collaboration that creates trusted computing-
based [5]. Implementation of the Trusted Platform Module
(TPM) is one of TCG’s specifications [3]. TPM allows se-
cure bootstrapping and enables remote parties to verify that
only authorized code is running on a system [20]. In recent
years, several approaches have been proposed to enhance the
security of WSNss, including the use of the Trusted Platform
Module (TPM) to provide secure communication and protect
sensitive data.

In this paper, we propose a solution to enhance commu-
nication in WSNs using a TPM. The TPM provides secure
storage and cryptographic operations, which can be used to
authenticate and encrypt the communication between sen-
sors. The proposed solution enhances the confidentiality, in-
tegrity, and authenticity of sensor data, which are critical re-
quirements for WSNs. Our contribution provides a novel
approach to secure WSNs and can be useful in various appli-
cations that require secure communication.

This paper focuses on the transmitted data that is gen-
erated from the sensors in a typical swarm design where a
server serves as the resource controller. The supervision of
nodes and the administration of sensors might be two of the
most important roles of a resource controller. This archi-
tecture consists of smart embedded devices (called nodes”)
networked to a server that orchestrates the nodes. Figure 1
depicts a node in its generic structure, which comprises mul-

tiple sensors that collect environmental data. At this node,
a multitude of cloud-based apps that communicate with one
another are operating. The server and other nodes connect
with each other over a wireless interface. A Trusted Plat-
form Module has been added to the node to bolster security.
TPM functions as a Root of Trust for every node, enhancing
its security.

Sensors

Trusted
Platform Module

?@ Certificate

fie>

L
b=

[t

manager
Hardware
Data
encryption d j
=)
o & |

0

Applications

ad
Cloud
Figure 1. IoT architecture in Trusted Computing.

Each application and sensor is able to leverage the TPM,
which employs cryptographic techniques to encrypt its data.
TPM might be a hardware or software component. Also de-
ployed on the server is a trusted component.

1.1 Contribution

In a flying ad-hoc network, UAVs can act as both sensor
nodes and routers, collecting and forwarding data to a central
location or to other nodes in the network. This enables the
network to cover a large area and provide a comprehensive
view of the environment being monitored. Lets assume that
they are using sensing systems to operate road traffic checks.
All of this transmitted data is extremely sensitive and must
be secured accordingly.

The security of a distributed Internet of Things (IoT) sys-
tem should consist of multiple components. As shown in
Figure 2, some of these stages include infrastructure in-
tegrity, node authentication, and data confidentiality.

The first component relates to the infrastructure’s own
dependability. To ensure the integrity of the infrastructure,
operating systems, and running programs, it is necessary to
confirm who runs the application. In distributed systems,
machines or programs running on those machines prove their

authenticity to other machines by authenticating themselves.

Integrity of Node
infrastucture Authentication

Figure 2. Stages of the security of an IoT system.

confidentiality of

transmitted data

The second component is node authentication, which is
the process of verifying the identity of a node (device or sen-
sor) before allowing it to access a wireless network. Itis a se-
curity mechanism that ensures that only authorized nodes are
allowed to communicate with the network and helps prevent
unauthorized nodes from accessing sensitive data or disrupt-
ing the network. Node authentication typically involves the
exchange of authentication credentials between the node and
the network, such as digital certificates, passwords, or shared
secrets. These credentials are used to verify the node’s iden-
tity and determine whether it should be granted access to the
network. Node authentication is an important aspect of wire-
less network security and is often used in combination with
other security mechanisms, such as encryption and access
control, to provide a comprehensive security solution.

An Internet of Things device manages and generates data
that is transmitted to other nodes. This type of data should
be protected to prevent vulnerabilities that allow intruders
to damage topology components. Encryption can be used
to protect this information, along with the use of TPM. The
aforementioned is examined in detail in this paper, and its
measurements are provided in Section V.

Given the importance of data security, an improved sensor
communication approach for wireless sensor networks based
on a TPM is proposed. To extract useful outcomes, the per-
formance and security of the proposed solution are evaluated
using simulations in a real-world scenario. Specifically, au-
thors contribute to the field of WSNs by:

¢ Introducing a novel communication protocol that uses
TPM to secure the communication between sensors in
the network. Our approach provides end-to-end encryp-
tion and integrity protection for sensor data, thus ensur-
ing the confidentiality and authenticity of the data.

* Proposing a lightweight key management scheme that
enables efficient key distribution and management
among sensors. The scheme uses the TPM’s unique
identity to generate session keys, which are used to en-
crypt and authenticate data packets.

* Conducting extensive experiments to evaluate the per-
formance of our proposed approach in terms of commu-
nication overhead, energy consumption, and security.

Overall, our proposed approach enhances the security and

efficiency of sensor communication in WSNs and can be ap-
plied to various applications, such as smart cities, industrial
control, and environmental monitoring. It employs TPM to
establish a secure and authenticated communication channel
between the nodes and the gateway and yields substantial re-
sults for the management of computational resources.

1.2 Structure of the Paper

The rest of this paper is organized as follows: Section II
discusses the related work on security in WSNs using TPM
and defines the main concepts and components studied in
this work. Section III presents our proposed enhanced sen-
sor communication scheme, which is followed by the evalua-
tion of the proposed scheme in Section IV. Finally, Section V
concludes the paper and presents future research directions.

2 Related Work & Background
2.1 Related work - State of the art

Security is regarded as one of the primary prerequisites
to the widespread adoption and implementation of the Inter-
net of Things and wireless sensor networks. In fact, IoT and
WSN security are popular discussion topics [18], [4]. The
paper [8] provides an overview of the most significant secu-
rity issues in WSN, with a particular emphasis on the security
vulnerabilities in the various protocol layers.

2.1.1 Security in WSN

In [16], the authors provide a comprehensive survey of
security issues in WSNs. They review the major security
threats and attacks that can occur in WSNs and present an
overview of the security mechanisms that have been pro-
posed to address these issues. The paper also discusses
the challenges associated with implementing security mech-
anisms in WSNs, such as limited resources and the need for
energy-efficient solutions. Finally, the paper presents a dis-
cussion of the future research directions in WSN security,
including the need for new security protocols and techniques
that can be adapted to the unique characteristics of WSNs.

The [17] survey discusses the security challenges and po-
tential threats in WSNs. The paper highlights different types
of attacks that WSNs are vulnerable to, such as jamming,
spoofing, eavesdropping, and denial-of-service attacks. Ad-
ditionally, the paper also reviews the countermeasures pro-
posed by various researchers to mitigate these attacks. The
study provides insights into the current state of security in
WSNs and identifies future research directions to enhance
the security of WSNs.

In [13], an overview of the various security issues that
arise in WSNs is provided. The authors highlight the unique
characteristics of WSNs, such as resource constraints, scal-
ability, and ad-hoc network topology, that make them vul-
nerable to security attacks. They discuss the various types
of attacks that WSNs face, including routing attacks, denial-
of-service attacks, and eavesdropping attacks, and the poten-
tial consequences of these attacks. The paper also reviews
the existing security solutions for WSNs, including cryp-
tographic algorithms, intrusion detection systems, and key
management techniques. The authors conclude by identify-
ing open research issues and potential directions for future
work in the field of WSN security.

This research [14] presents a comprehensive survey of se-
curity threats and countermeasures in the IoT domain. The
authors highlight the increasing number of IoT devices and
their growing importance in various fields such as health-
care, transportation, and smart cities. However, the authors
also point out the security challenges that arise due to the
heterogeneity and complexity of IoT systems. The survey

covers various security threats such as unauthorized access,
data tampering, and denial-of-service attacks. Additionally,
the authors also discuss several countermeasures to mitigate
these threats, including authentication, encryption, and intru-
sion detection systems. The paper concludes with a discus-
sion of the limitations of existing security solutions and the
need for further research in this area.

2.1.2 TPM in WSN

The paper [7] proposes the use of TPM-based architec-
tures to enhance the physical security of WSN. The authors
argue that current security solutions for WSNs have limita-
tions and do not address physical security adequately. They
propose the use of TPMs, which are hardware-based security
solutions that can securely store cryptographic keys and pro-
vide secure boot and remote attestation. The paper discusses
the design and implementation of a TPM-based architecture
for WSNs and presents the results of experiments conducted
to evaluate its performance.

The paper [10] proposes a framework for the integration
of security measures in the IoT to create a secure domain
of sensor nodes, which is essential in critical areas like the
military. The lack of robust, secure, and trusted measures to
ensure the confidentiality, availability, and integrity of infor-
mation throughout its lifecycle limits the application of IoT
in such areas. The proposed framework uses TPM in wire-
less sensor nodes to generate credentials, build local trust
structures, and establish trust relationships between domain
nodes.

In [21], a TPM-based conditional privacy-preserving au-
thentication protocol (T-CPPA) is proposed to ensure the in-
tegrity and authenticity of messages and instructions in vehi-
cle ad-hoc networks (VANETS) based on the Internet of Ve-
hicles (IoV). The T-CPPA protocol embeds the system mas-
ter private key into the TPM to generate pseudonyms and
signature keys, protecting the privacy of the vehicle. The au-
thenticity of the message content is ensured by calculating
message similarity in a cluster-based model. The scheme is
designed in symmetric bilinear groups and includes a batch
validation algorithm to improve efficiency.

The paper [12] explores the need for robust authenti-
cation protocols in Internet of Drones (IoD) networks to
mitigate security and privacy threats. The paper discusses
the challenges of designing efficient and lightweight au-
thentication solutions due to the limitations of Unmanned
Aerial Vehicles (UAVs) in terms of energy, computational,
and memory resources. The paper presents up-to-date re-
search studies on authentication mechanisms for IoD net-
works, including conventional technologies and methods
such as hash functions, Public Key Infrastructure (PKI),
and Elliptic-Curve Cryptography (ECC), as well as emerg-
ing technologies such as Mobile Edge Computing (MEC),
Machine Learning (ML), and Blockchain. The paper also
reviews effective hardware-based solutions for identifying
and authenticating network nodes within the IoD based on
TPM, Hardware Security Modules (HSMs), and Physically
Unclonable Functions (PUFs). Finally, the paper provides
future directions on these relevant research topics, stimulat-
ing further work.

The paper [19] addresses the growing concern over cy-

ber threats to Supervisory Control and Data Acquisition
(SCADA) and automation systems in the Industrial Internet
of Things (IloT) and Industry 4.0 eras. The use of insecure
communication protocols, such as Modbus TCP, DNP3, and
S7, increases the vulnerabilities of these systems, exposing
the data to outside networks and making them susceptible
to attack. To respond to this security issue, the paper pro-
poses integrating TPM to ensure the authenticity of trans-
mitted data. The experimental results show that integrating
TPM in automation/SCADA systems can enhance security
and reduce the risk of intrusion. Two methods are proposed
to assure the authenticity of transmitted messages, and the
paper presents measurements related to the increased time
latency introduced due to the proposed concept. Overall,
the paper presents a perspective on addressing the security
challenges of legacy structures in the context of the IIoT and
Industry 4.0 era.

In [9], a proprietary solution for using the TPM to au-
thenticate sensors in wireless sensor networks that create a
sensor’s domain is described. The authors present a model
of the network, which includes three types of nodes: the M
node, which is the authentication authority and data recipi-
ent; the S node, which is the source of sensor data; and the
M node, which acts as a backup for the M node. The paper
also outlines the main operations available in the sensors’
domain, including managing sensors, authentication, and re-
generation of node credentials.

The paper [11] proposes a lightweight authentication and
key agreement scheme based on TPM for WSN. The scheme
is designed to provide secure communication and mutual au-
thentication between the nodes of the WSNs without requir-
ing a significant amount of computational resources. The
proposed scheme utilizes the TPM to generate and manage
the secret keys, which are used for authentication and en-
cryption. It also employs ECC for efficient key exchange
and message authentication.

All the above research discusses the use of TPM for var-
ious aspects of wireless sensor network security, including
key management, data aggregation, trust management, and
communication protocol design.

2.1.3 WSN & Security requirements for WSN

WSNs face a number of challenges, including limited
energy and computing resources, high data traffic, network
topology, node placement, security, and data reliability. Ad-
ditionally, WSNs often require specialized protocols and
algorithms to optimize network performance and address
these challenges. Furthermore, the wireless nature of WSNs
makes them vulnerable to security threats. To ensure the
security of WSNs, several security requirements need to be
considered[15] [8].

Firstly, authentication and authorization mechanisms
should be employed to ensure that only authorized users or
devices can access the network. Secondly, data confiden-
tiality should be guaranteed through encryption techniques
to prevent unauthorized access or eavesdropping. Thirdly,
message integrity should be ensured to prevent tampering
with the messages transmitted over the network. Fourthly,
network availability should be maintained to prevent denial-
of-service attacks. Additionally, intrusion detection and pre-

vention mechanisms should be in place to detect and mitigate
any potential security breaches. Finally, the limitations of the
resources have to be considered. Sensors are typically low-
power and low-cost devices with limited resources, which
makes it challenging to implement strong security measures.
By fulfilling these security requirements, WSNs can be
made more secure and reliable for various applications.

22 TPM

The TPM is a secure microcontroller that provides crypto-
graphic functionality to a computer. The TPM can be used to
securely store cryptographic keys and perform cryptographic
operations, such as digital signatures, encrypting/decrypting
data, and generating cryptographic hashes [6] [3].

Measurements using TPM involve securely measuring
and storing the state of the system, including software and
configuration information. This information is used to estab-
lish the trustworthiness of the system and ensure that it has
not been altered or compromised. The TPM can measure
various components of the system, including the BIOS, boot
loader, kernel, and applications. The TPM also provides a
secure environment for storing keys and other sensitive in-
formation, making it difficult for attackers to access this in-
formation.

Overall, the TPM provides a secure way to store and pro-
cess sensitive information, and to measure the state of the
system in order to establish trust.

3 The Proposed Scheme

To satisfy the WSN security standards, the Secure Hash
Method (SHA), the AES symmetric key algorithm, and the
RSA asymmetric key algorithm are utilized in conjunction
with the hardware TPM. In addition to verifying digital sig-
natures, the TPM is capable of encryption and decryption
operations.

The novelty of this research is that it presents an efficient
method for securely transmitting sensor data in a distributed
network by using the capabilities of TPM 2.0.

The proposed model is presented in two parts, the first of
which specifies how to ensure the communication between
two nodes by explaining in detail the processes that take
place in each. In the second section, two flow diagrams of
the data sequence on the Client and Server are presented.

3.1 Enhanced Sensor Communication
Scheme

The establishment of communication between Client and
Server is carried out using the steps outlined below, where
the first four steps are identical for both the RSA and AES
encryption algorithms and the remaining steps vary depend-
ing on the encryption algorithm selected by the Client for the
encrypted information being transmitted:

* The Client initiates communication by sending a con-
nection request to the Server (Request Connection).

» Upon receiving the connection request, the Server gen-
erates a pair of RSA keys (public PUKs and private
PRKSs) and returns the client’s public key (PUKSs).

 Following receipt of the server’s public key, the client
generates its own RSA key pair (public PUKc and pri-
vate PRKc), encrypts its public key with the server’s

public key, and sends the server its public key encrypted
PUKs (PUKGc).

* The Server then decrypts PRKs(PUKs(PUKCc)) using its
own private key, which it generated at the beginning of
the communication, after receiving the Client’s public
key.

3.1.1 RSA Encryption (a)

Figure 3 shows the key and data exchange between Client
and Server using RSA algorithm. The steps is implemented
as follows: i. The Server continues its operation by gen-
erating a pair of shared keys (public PUKcom and private
PUKcom) RSA-1024, encrypting it with the client’s pub-
lic key that received the new public key PUKc(PUKcom),
and sending it back to the client. ii. Upon receiving the
new public shared key from the Server, the Client decrypts
it with its private key PRKc(PUKc(PUKcom)) and, if the
decryption is correct, encrypts a message with the PUK-
com shared public key ("message’), which is returned to the
Server. iii. Receiving the new encrypted message, the Server
decrypts it with the shared private key PRKcom(PUKcom
(’message”)), and if the decryption was successful, it digi-
tally signs with the private key a message for the successful
communication SIGN(PRKcom (message”), which is sent
to the Client. The Server is now prepared to accept encrypted
information from the Client encrypted information with the
shared public key (PUKcom). iv. Lastly, the Client receives
the digitally signed message, verifies it with the shared pub-
lic key (PUKcom), and if it has a valid signature (VALI-
DATE (PUKcom(SIGN(PRKcom(”message”))), establishes

it as permanent.

Create PUKs & PRKs
Sent PUKs

(RC)

Request Connection (RC)

PUKs
Create PUKc & PRKc - —

Encrypt PUKs(PUKc) PUKs(PUKc) Decrypt PRKs(PUKs(PUKc))
Send PUKs(PUKc) Create PUKcom & PRKcom
PUKc(PUKcom) Encrypt PUKc(PUKcom)

Decrypt PRKc(PUKc(PUKcom) Send PUKc(PUKcom)

Encrypt PUKcom(“message”)
Send PUKcom(“message”)

Decrypt
PRKcom(PUKcom(“message”))
Signature message
SIGN(PRKcom(“Message”))

Decrypt
Encrypt PUKcom(“Data”) PRKcom(PUKcom(“Data”))
PUKcom (“Dat:
Send PUKcom (“Data”) w‘

—

PUKcom(“message”)

SIGN(PRKcom(“Message”))

Validated signature message
Encrypt PUKcom(“Data”)
Send PUKcom (“Data”)

Decrypt

— — PRKcom(PUKcom(“Data”))
—
—
—_

-

Figure 3. Cryptographic key and data exchange between
nodes using RSA algorithm.

3.1.2 AES Encryption (b)

Figure 4 shows the key and data exchange between Client
and Server using AES algorithm. The steps is implemented
as follows: i. The Server continues its operation by gen-
erating an AES public key (AESKcom), encrypting it with
the previously received public key of the Client, and send-
ing the new public key PUKc(AESKcom) back to the Client.

ii. Upon receiving the new public key from the Server,
the Client decrypts it with its private key PRKc(PUKc
(AESKcom)) and, if the decryption is correct, encrypts a
message with the public key AESKcom(” message”) be-
fore sending it back to the Server. iii.When the Server re-
ceives the new encrypted message, it decrypts it with the
AESKcom public key(AESKcom(’message”)), and if the
decryption was successful, it encrypts a message with the
AESKcom(’message”) public key and sends it to the Client.
o The Server is now prepared to accept encrypted informa-
tion from the Client using the shared public key (AESKcom).
iv. Finally, the Client receives the new encrypted mes-
sage, decrypts it using the AESKcom shared key(AESKcom
("message”)), and if the decryption was successful, estab-
lishes permanent communication with the Server and be-
gins sending encrypted data using the AESKcom shared key

(Data”).

Create PUKs & PRKs
Sent PUKs

PUKs

PUKs(PUKc)

Decrypt PRKs(PUKs(PUKc))
Create AESKcom

Encrypt PUKc(AESKcom)
Send PUKc(PUKcom)

PUKc(AESKcom)

AESKcom(“message”)

Decrypt
AESKcom(AESKcom(“message”))
AESKcom(“message”) Encrypt AESKcom(“message”)

Send AESKcom(“message”)

AESKcom(“Data”)

Decrypt

| AESKcom(AESKcom(“Data”))
AESKcom(“Data”)

Decrypt
- AESKcom(AESKcom(“Data”))

Figure 4. Cryptographic key and data exchange between
nodes using AES algorithm.

In order to find the most efficient way to encrypt and de-
crypt information in terms of time and the use of IoT re-
sources (memory, CPU usage, etc.), we will look at both the
performance of assigning the encryption and decryption pro-
cesses to the processor (CPU) and the performance of the
system when the encryption and decryption processes are
given to TPM 2.0.

3.1.3 Assumptions

Authentication, as described in Section 1.1, is the second
security component of a distributed IoT system (Node au-
thentication). The authentication of the client and server is
therefore not relevant to this study; it is assumed that nodes
are authenticated. Additionally, the proposed solution does
not include an attestation service, which is the requirement
of the first component (Integrity of the infrastructure). The
TPM is utilized to encrypt sensor-generated data and decrypt
it on the other end. Using a trusted component, such as TPM,
to ensure the confidentiality of transmitted data is the objec-
tive of this research.

3.1.4 Flow diagram of the proposed scheme

Figure 5 shows the overall flow diagram for data exchange
between the Server and the Client, and encryption and de-
cryption using the CPU and TPM 2.0.

Generate TPM
Encrypt sensor Value

Sensor Value

¥

CPU Send encrypted
Encrypt sensor Value sensor data

''

Decrypt sensor data
with common key

Receive encrypted
data form client

Decrypt sensor data
with private key

Figure 5. Flow diagram of Enhanced Sensor Communi-
cation Scheme

It is appropriate to mention that the server decrypts data
with the setting (TPM or CPU) set during the authentication
phase.

4 Experiments

4.1 Experimental Environment

The experimental part was conducted using two ap-
proaches: one with the Raspberry Pi as Client for data en-
cryption and a PC as Server, and the other with the Rasp-
berry Pi as Server for data decryption and a PC as Client.
The PC used to send data to the RPi, either as a Client or
a Server, has an i7 processor of the seventh generation, 8
cores, and a frequency of 2.8 GHz, which is significantly
higher than the RPi’s 1.2 GHz. As a result, it completes
the tasks assigned to it more quickly. The RPi 3 Model B
board was chosen to support this project’s implementation
since it has enough capacity to manage cryptographic pro-
cedures. The RPi Model 3 B is widely used in Unmanned
and autonomous vehicles (UxVs) and is supported by vari-
ous bootloaders. For the sensor communication scheme, the
Infineon IRIDIUM SLI 9670 TPM2.0 board will be used,
on which the Infineon OPTIGA™ SLI9670 TPM 2.0 circuit
is installed. OPTIGA™ TPM SLI 9670 microcontroller ad-
heres to the TCG 2.0 family’s standards (Figure reffig5), is
compatible with the RPi Model 3 B, and provides a variety
of security functionalities, including those described in [2]
[1].

For the evaluation of the system, a basic scenario with
five sensors was created. As shown in Table 1, the selected

sampling frequencies in the basic scenario are 1Hz (1sec),
0,5Hz (2sec), and 0,2Hz (5sec) for 60%, 20%, and 20% of
the values, respectively.

Table 1. Parameters of sensors

No. of Sensor | Frequency (Hz) | Data Type
Sensor; 1.0 Signed Integer
Sensor 1.0 Unsigned Integer
Sensors 1.0 Boolean
Sensory 0.5 Float
Sensors 0.5 Unsigned Integer

The scenario initially applied the “Create & Send”
method, the mass sending method with two time windows
of 10 and 20 seconds, and finally the mass sent by pack-
aged method with the LIFO (Last Inputs — Last Output) al-
gorithm for both unencrypted information and encrypted in-
formation. For encryption, the algorithms AES-128, RSA-
1024, and RSA-2048 were used both with the use of JAVA
libraries, where the assignment of encrypting and decrypting
is assigned to the CPU of the device, and with Microsoft’s
TSS libraries for JAVA, where the above processes are as-
signed and carried out in TPM 2.0.

With the start of the scripts, the clock skew between the
devices operated by the Client and Server apps was initially
calculated so that absolute times could be found with relative
accuracy. The applications were executed for a period of at
least 10 minutes so that there is a representative sample of
information encryption and decryption measurements.

4.2 Implementation Assumptions

In this paragraph, the implementation assumptions of the
code are stated. IPv4 is the protocol in use. Before beginning
the authentication procedure, the time difference between the
server and client clocks is determined. The Client sends an
unencrypted packet of data to the Server along with its set-
tings (TPM support, selected encryption algorithm, key size,
and maximum encryption packet size) at the beginning of the
communication, and the Server sends an identical packet to
the Client. The application uses the encryption/decryption
method (CPU or TPM) for which it is configured, regard-
less of the settings of the other; i.e., if the Client is config-
ured to encrypt with the CPU, it will not change the method
if the Server uses TPM; however, the Server will decrypt
with TPM in this case. Multiple Clients can connect to the
Server simultaneously (logical star topology). In addition,
the PC’s TPM operates at a higher frequency than that of
the RPi. In order to obtain a representative sample of in-
formation encryption/decryption measurements, algorithms
were executed for a minimum of ten minutes. There were
twenty repetitions for each cryptographic method. The appli-
cation uses for encryption and decryption the method (CPU
or TPM) for which it is configured, regardless of the settings
of the other; i.e., if the Client is set to encrypt with the CPU
it will not change the method if the Server works with TPM,
while in this case the Server will decrypt using TPM. The
Client application algorithm for the ”Create and Send” set-
ting is implemented using a thread and goes into inaction
mode until the data is produced by each sensor; instead, the
other setting "Mass Sending” is implemented with a single

thread algorithm that never goes into rest as it collects sensor
values and checks if the minimum payload size for sending
the information to the Server has been met.

Considering that the process of authentication between
Client and Server is complete, applications are ready to ex-
change encrypted information using either the common pub-
lic key or the client’s public key. Thus, it is not possible for
third parties to know what information is exchanged, but at
the same time, integrity is ensured as any modification to the
information transmitted after sending makes it impossible to
decrypt and thus reject it by the application that performs
server transactions.

4.3 Experimental results

According to the times and the payload size of the infor-
mation encrypted or decrypted, the processed statistics for
the encryption or decryption rate (Bytes/msec) are given in
relation to the payload size (bytes) of the data in Table 2.

Average CPU and memory usage values for each selected
encryption/decryption algorithm are given in the Tables 3
and 4, as well as the recorded values of the resources when
not applying an encryption algorithm (no encryption).

The maximum amount of RSA-1024 information that can
be encrypted, according to the application settings, is 117
bytes; the remaining 11 bytes are used for the header, while
bigger amounts of information are separated into packets of
117 bytes or less. The maximum amount of RSA-2048 infor-
mation that can be encrypted using asymmetric encryption
is 245 bytes; the remaining 11 bytes are used for the header,
while larger amounts of information are broken up into pack-
ets of 245 bytes or lower. When RSA-1024 is used to encrypt
data, it requires 128 bytes, whereas RSA-2048 requires 256
bytes. Before comparing and analyzing the encryption meth-
ods, it is necessary to make a few remarks and clarify how
the tests were conducted. All provided times are recorded for
the RPi. It is mentioned that the server produces keys twice,
which is the most time-intensive operation. As the PC gen-
erates the two needed keys in a shorter amount of time, the
time required to complete the authentication process while
the RPi is acting as a client should be less than when the RPi
is acting as a server.

4.4 Encryption/Decryption Outcomes - Data
Encryption/Decryption Rates

Observing Figure 6 and examining each algorithm indi-
vidually reveals the following during the Client application’s
encryption processes: For the AES-128 algorithm, we ob-
serve a steady increase in data encryption up to approxi-
mately 500 bytes, then an increase to approximately 3000
bytes, and then a stabilization of performance. For the RSA-
1024 algorithm utilizing CPU and TPM, as well as the RSA-
2048 algorithm utilizing CPU, it exhibits a linear perfor-
mance without significant fluctuations in the data it encrypts
over time, i.e. a steady performance. Furthermore, the per-
formance of RSA-2048 using TPM improves as the number
of bytes increases.

Table 2 demonstrates, based on the decryption of data on
the RPi using the Server application, that, for the AES-128
algorithm, an improvement in performance is stabilized for
a payload of 3000 bytes. The decryption performance of

all other algorithms is consistent. It should be noted that
there was no variation in RSA-2048 using TPM, as the min-
imum information necessary for decryption is 256 bytes, re-
gardless of the payload size of the useful information (about
17). Overall and for all encryption algorithms, a conclusion
that could be stated is that AES-128 has the best encryption
times, followed closely by RSA-1024 and RSA-2048 when
using a CPU, and then by RSA-2048 and RSA-1024 when
employing a TPM.

Encryption Time
9000
8000 1
7000
6000

., 5000

Byte:

4000 ¢

3000

2000

1000 |

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
msec

+—AES-128 CPU -#-RSA-1024 CPU RSA-1024 TPM ——RSA-2048 CPU RSA-2048 TPM

Figure 6. Average encryption time (msec) according to
the payload size (bytes) of the information per crypto-
graphic algorithm.

Comparing the decryption algorithms reveals that AES-
128 is the most efficient, followed by RSA-1024 and RSA-
2048 using CPU, and then RSE-1024 and RSA-2048 using
TPM.

Figure 7 demonstrates the schematic evaluation of de-
cryption in terms of time.

Decryption Time
10000

9000
8000 |
7000
6000

5000

Bytes

4000

3000

2000

1000 ¢

o &
0 2000 4000 6000 8000 10000 12000
msec

——AES-128 CPU —=-RSA-1024 CPU RSA-1024 TPM ——RSA-2048 CPU RSA-2048 TPM

Figure 7. Average decryption time (msec) according to
the payload size (bytes) of the information per crypto-
graphic algorithm.

Comparing encryption and decryption separately for each
algorithm reveals that decryption requires more time than en-

Table 2. Encryption & Decryption rates according to the payload size of the information

Encryption Decryption
Algorithm Payload size Rate Payload size Rate
(bytes) (bytes/msec) (bytes) (bytes/msec)
17 8.27 17 15.00
543 147.31 1024 597.89
4003 609.58 4096 1121.83
AES-128 7994 593.60 8192 982.08
17 4.97 128 5.73
543 50.89 640 6.46
4003 68.69 4429 7.87
RSA-1024 CPU 7981 76.50 8717 8.19
17 0.16 128 0.84
542 1.44 640 0.84
4003 1.67 4422 0.85
RSA-1024 TPM 7981 1.70 8712 0.85
17 2.97 256 2.62
543 40.02 768 2.54
4003 66.85 4318 2.85
RSA-2048 CPU 7988 68.74 8397 2.87
17 0.04 256 1.03
543 2.16 768 1.03
4003 3.18 4322 1.03
RSA-2048 TPM 7992 3.30 8397 1.03

Table 3. Average percentage use of CPU & memory in
encryption process

Algorithm CPU | Memory
No encryption | 23.65% | 29.92%
AES-128 CPU | 24.11% | 30.38%

RSA-1024 CPU | 24.29% | 30.15%
RSA-1024 TPM | 25.25% | 31.35%
RSA-2048 CPU | 26.41% | 30.45%
RSA-2048 TPM | 31.20% | 30.70%

Table 4. Average percentage use of CPU & memory val-
ues in decryption process

Algorithm CPU | Memory
No encryption 6.8% 29.46%
AES-128 CPU | 6.73% | 29.76%

RSA-1024 CPU | 8.15% | 29.67%
RSA-1024 TPM | 8.65% | 31.02%
RSA-2048 CPU | 11.13% | 28.73%
RSA-2048 TPM | 8.18% | 29.78%

coding for all RSA applications. In contrast to the AES al-
gorithm, decryption times are shorter than encryption times,
meaning it takes less time to decrypt the same data than it did
to encrypt it. When we examine the AES algorithm closely,
we observe that the greatest deviation is observed for small
volumes of data, while as the volume of data increases, the
times appear to converge. In contrast, in applications of the
RSA algorithm, small data volumes are associated with the
smallest time variations, whereas large data volumes are as-
sociated with significant time variations.

Regarding the client-side encryption rate for each algo-

rithm, it can be seen that AES-128 increases the encryption
rate (0-200 bytes/msec) geometrically from O to 550 bytes,
then proportionally up to 5000 bytes of information to en-
crypt, reaching 820 byts/msec, before stabilizing. The en-
cryption rate of RSA-1024 is marginally higher than that
of RSA-2048 when using a CPU whose exponential in-
crease reaches close to 500 bytes and is of the order of 60
bytes/msec for the first while for the second at 40 bytes/msec,
then RSA- 1024 follows a numerical increase of the rate
up to about 79 bytes/msec, until the end, while RSA 2048
follows a numerical rise of the pace up to about 70 bytes
The RSA-1024 and RSA-2048 algorithms produce a similar
picture of the TPM encryption rate, but with a significantly
lower rate, which never exceeds 3.4 bytes/msec. Compar-
ing all encryption algorithms, it is immediately apparent that
AES-128 has the highest encryption rate, followed by RSA-
1024 and RSA-2048 when using the CPU, and RSA 2048
and RSA-1024 when using the TPM. RSA 2048 and RSA-
1024 have very low encryption rates, with a difference that
exceeds twentyfold. Figure 8 provides a summary of the en-
cryption rates for all examined algorithms.

AES-128 exhibits an exponential increase in information
decryption rate up to 597 bytes/msec for information of 1024
bytes, then continues to rise and doubles to 1120 bytes/msec
for information of 4096 bytes, and eventually reaches satu-
ration and drops to 982 bytes/msec for information of 8192
bytes. The decryption rates are significantly lower for RSA-
1024 (approximately 5.7 to 8 bytes/msec) and RSA-2048
(2.5 to 2.8 bytes/msec) when using the CPU; however, the
initial variation observed in RSA-2048 between decryptions
of 256 and 768 bytes, approximately 0.07 bytes per msec, is
within the statistical error margin. RSA-2048, with a decryp-
tion rate just exceeding 1 byte/msec, is followed by RSA-

Encryption Rate
1000.00

100.00 /

10.00

Byte/msec

0.01

o

1000 2000 3000 4000 5000 6000 7000 8000 9000
Bytes

——AES-128 -#-RSA-1024 CPU RSA-1024 TPM ——RSA-2048 CPU RSA-2048 TPM

Figure 8. Data encryption rates (bytes/msec) per crypto-
graphic algorithm.

1024, with a rate not exceeding 0.85 byte/msec. Figure 9
illustrates the decryption rates for each algorithm.

Decryption Rate
10000.0

1000.0 B S I———

1000 |/

Byte/msec
S

0.1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Bytes

——AES-128 -#-RSA-1024 CPU —+—RSA-1024TPM —#—RSA-2048 CPU RSA-2048 TPM

Figure 9. Data decryption rates (bytes/msec) per crypto-
graphic algorithm.

Comparing the encryption and decryption rates for each
algorithm reveals that for all RSA applications, the encryp-
tion rate is significantly higher than the decryption rate, with
the exception of very small data volumes where the rates
are nearly identical. In contrast to the use of a CPU, where
the encrypting rate is 90 times greater than the decrypting
rate, the difference between encryption and decryption rates
is close to 50 percent when algorithms utilizing TPM are ap-
plied. Instead of the AES algorithm, the decryption rate is
greater than the encryption rate, and while the two rates are
identical for small data, they tend to converge for large data
volumes.

4.5 Resources consumption outcomes

AES-128 appears identical to RSA-1024 in terms of pro-
cessing power and the quantity of data it encrypts, as shown
in Figure 10; the minimum greater requirement has RSA-
1024 using TPM; and the highest requirement has RSA-2048

using CPU and TPM, where increasing the quantity of data
to encrypt appears to identify. In general, we observe that
the requirements for processing power are consistent, and
the differences between them are in the order of 1-2%. It
appears that the load of information encryption has no signif-
icant effect on CPU utilization. If we observe the use of non-
encryption and encryption methods, the load is restricted to
approximately 3% on average.

Encryption CPU Usage

Percentage usage

5%

0%
[o] 1000 2000 3000 4000 5000 6000 7000 8000 9000
Bytes

—e—No encrypt—+—AES-128 CPU —#-RSA-1024 CPU —+—RSA-1024 TPM ——RSA-2048 CPU RSA-2048 TPM

Figure 10. CPU usage in data encryption.

Examining the memory requirements during the encryp-
tion process for the encryption algorithms in Figure 11, we
observe that there is little variation both within each algo-
rithm and between them, with the average value being close
to 30% and the deviation within each algorithm not exceed-
ing 4%. The variance in memory usage for selecting and
sending unencrypted information (NO Encrypt) to the client
application relative to the applied algorithms is capped at ap-
proximately 3%.

Encryption Memory Usage
34%

33%

32%

w
=
®

— +——

Percentage usage
w
8
R

/
il

28%
27%

26%
o} 1000 2000 3000 4000 5000 6000 7000 8000 9000
Bytes

—o—No encrypt ——AES-128 CPU —-RSA-1024 CPU —+—RSA-1024 TPM —+—RSA-2048 CPU RSA-2048 TPM

Figure 11. Memory usage in data encryption.

Figure 12 demonstrates that when decrypting data in
terms of CPU usage, a small amount of data results in the
highest CPU usage for all encryption algorithms and when
receiving unencrypted data. This increased CPU utilization

is a result of the deluge of data packets that the Server ap-
plication receives and the ensuing demands to manage these
packets. As the payload size of the data packet increases,
the processing power requirements decrease exponentially
(between 500 and 1000 bytes), then increase linearly (up to
about 4100 bytes), and for larger data packets, the CPU us-
age curves continue to rise at a very slow rate.

Decryption CPU Usage

Percentage usage

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Bytes

—e—No Decrypt——AES-128 CPU-=—RSA-1024 CPU—+—RSA-1024 TPM ——RSA-2048 CPU—e—RSA-2048 TPM

Figure 12. CPU usage in data decryption.

We observe, based on CPU utilization, that when down-
loading unencrypted data, we have slightly higher process-
ing demands than when using AES-128, due to the simul-
taneous operations of receiving, displaying, and storing the
data on the RPi. In contrast to AES-128 encryption, which
has provided the best performance, the packet is decrypted,
the results are displayed on the terminal, and then the data
is saved, allowing the device to better distribute its functions
and requirements.

Regarding the memory requirements for data decryption
tasks in the Server application, the differences between algo-
rithms are less than 2.5%, and they all adhere to a consistent
pattern regardless of the payload size of the data.

Decryption Memory Usage
32.0%

31.0%

30.0% {\ 7 3

e —

29.0%

28.0%

Percentage usage

27.0%
26.0%

25.0%
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Bytes

——No Decrypt——AES-128 CPU—=—RSA-1024 CPU RSA-1024 TPM ——RSA-2048 CPU RSA-2048 TPM

Figure 13. Memory usage in data decryption.

Figure 13 indicates that the optimal memory algorithm

is RSA-2048, followed by RSA-1024 and AES-128 when
using the CPU, and RSA-2048 and RSA-1024 when using
the TPM.

It should be noted that based on CPU usage measure-
ments, the difference between the encryption rate and the
decryption rate approaches 90%, whereas in TPM, the vari-
ation between the rates is better, reaching 50%. However,
the CPU encryption and decryption rates are multiple times
faster than TPM encryption and decryption rates, which af-
fects the total encryption and decryption times.

5 Conclusions

The paper presents a novel approach to enhancing sensor
communication in WSNs using TPM. The proposed system
offers several benefits, including secure communication, data
integrity, and confidentiality. We conducted experiments to
evaluate the effectiveness of the proposed system.

The results of our experiments indicate that the use of
TPM in wireless sensor networks can significantly improve
the security and reliability of data communication, which is
crucial for applications such as healthcare, and environmen-
tal monitoring. The proposed system can be easily integrated
into existing sensor networks and demonstrates adaptivity to
different topologies and scalability.

In conclusion, the use of a TPM improves the security of
an IoT system significantly, despite the fact that there are
some time delays in comparison to the CPU-based setup.
Considering energy efficiency, it is remarkable to mention
the trade off between computational capabilities and energy
consumption, in which TPM shows significant advantages.
Essentially, our proposed communication scheme through
TPM guarantees:

* The TPM secures and stores the keys so that they cannot
be altered.

 Data can be encrypted in the secure environment of the
TPM.

* No execution variations exist during encryption and de-
cryption using TPM.

 The transmitted information is encrypted.

* The secure communication process is done using as few
resources as possible.

In summary, the proposed system can effectively enhance
sensor communication in WSNs using TPM. The system of-
fers a promising solution for addressing security and com-
munication issues in sensor networks and can be applied in
various real-world scenarios. It is a state-of-the-art scheme
utilizing TPM to establish a secure and authenticated com-
munication channel between the nodes and the gateway. This
protects against eavesdropping, man-in-the-middle attacks,
and other network-based attacks.

While HW-based TPM is the most secure type of TPM,
its performance must be improved to satisfy the increasing
security need. Future work can investigate the scalability
and performance of the proposed system in large-scale sen-
sor networks.

6

Acknowledgments

Funded by the European Union. Views and opinions ex-
pressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or CINEA.
Neither the European Union nor the granting authority can
be held responsible for them.

7
(1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

References

IRIDIUM SLI 9670 TPM2.0. Available:
https://www.infineon.com/cms/en/product/evaluation-boards/iridium-
sli-9670-pm2.0/, 2020. [Online; accessed 23 4 2022].

[91
[10]
[11]

[12]

[13]

[14]

OPTIGATM TPM SLI9670. https://www.infineon.com/cms/en/product/security-

smart-card-solutions/optiga-embedded-security-solutions/optiga-
tpm/sli-9670/, 2020. [Online; accessed 23 4 2022].

Trusted Computing. https://trustedcomputinggroup.org/trusted-
computing/, 2020. [Online; accessed 23 4 2022].

P. Aggarwal, C. Gonzalez, and V. Dutt. Hackit: A real-time simulation
tool for studying real-world cyberattacks in the laboratory. In B. B.
Gupta, G. M. Pérez, D. P. Agrawal, and D. Gupta, editors, Handbook
of Computer Networks and Cyber Security, Principles and Paradigms,
pages 949-959. Springer, 2020.

D. G. K. Arthur, Will Challener. Using the new trusted platform mod-
ule in the new age of security. In A Practical Guide to TPM 2.0, pages
285-288. Springer Nature, 2015.

D. G. K. Arthur, Will Challener. Using the new trusted platform mod-
ule in the new age of security. In A Practical Guide to TPM 2.0, pages
285-288. Springer Nature, 2015.

M. Barbareschi, E. Battista, A. Mazzeo, and S. Venkatesan. Advanc-
ing wsn physical security adopting tpm-based architectures. Proceed-
ings of the 2014 IEEE 15th International Conference on Information
Reuse and Integration, IEEE IRI 2014, pages 394-399, 02 2015.

B. Bhushan and G. Sahoo. Recent advances in attacks, technical chal-
lenges, vulnerabilities and their countermeasures in wireless sensor
networks. Wirel. Pers. Commun., 98(2):2037-2077, jan 2018.

[15]

[16]
[17]

[18]

[19]

[20]

[21]

J. Furtak and J. Chudzikiewicz. The concept of authentication in wsns
using tpm. pages 183-190, 09 2014.

J. Furtak, Z. Zielinski, and J. Chudzikiewicz. A framework for con-
structing a secure domain of sensor nodes. Sensors, 19(12), 2019.
D.-H. Lee and L.-Y. Lee. A lightweight authentication and key agree-
ment schemes for iot environments. Sensors, 20(18), 2020.

E. T. Michailidis and D. Vouyioukas. A review on software-based and
hardware-based authentication mechanisms for the internet of drones.
Drones, 6(2), 2022.

H. Modares, R. Salleh, and A. Moravejosharieh. Overview of security
issues in wireless sensor networks. pages 308-311, 09 2011.

M. Papaioannou, M. Karageorgou, G. Mantas, V. Sucasas, 1. Essop,
J. Rodriguez, and D. Lymberopoulos. A survey on security threats and
countermeasures in internet of medical things (iomt). Transactions on
Emerging Telecommunications Technologies, 33, 06 2022.

R. Roman, J. Zhou, and J. Lopez. On the features and challenges
of security and privacy in distributed internet of things. Computer
Networks, 57:2266-2279, 07 2013.

J. Sen. A survey on wireless sensor network security. 2010.

G. Sharma, S. Vidalis, N. Anand, C. Menon, and S. Kumar. A survey
on layer-wise security attacks in iot: Attacks, countermeasures, and
open-issues. Electronics, 10(19), 2021.

P. Singh, B. Bhargava, M. Paprzycki, N. Kaushal, and W.-C. Hong.
Handbook of Wireless Sensor Networks: Issues and Challenges in
Current Scenario’s. 01 2020.

A. Tidrea, A. Korodi, and I. Silea. Cryptographic considerations for
automation and scada systems using trusted platform modules. Sen-
sors, 19(19), 2019.

R. Toegl, T. Winkler, M. Nauman, T. W. Hong, J. Winter, and M. Giss-
ing. Programming Interfaces for the TPM, pages 3-32. Springer In-
ternational Publishing, Cham, 2015.

M. Zhang, B. Zhu, Y. Li, and Y. Wang. Tpm-based conditional
privacy-preserving authentication protocol in vanets. Symmetry,
14(6), 2022.

